Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Nucl Med ; 36(11): 931-940, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35969311

RESUMO

OBJECTIVE: We previously reported that alterations of the tumor microenvironment (TME) by programmed death receptor-1 (PD1) blockade affected tumor glucose metabolism and tumor 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake. In cancer cells, high glycolysis allows cells to sustain rapid proliferation since glycolysis is closely related to the proliferation of cancer cells. Therefore, imaging of cellular proliferation may provide more detail of TME alterations. In this study, we investigated how TME alterations by PD1 blockade affects the uptake of 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), which is a 18F-radiolabeled thymidine derivative and is taken up by proliferating cells. METHODS: Mice inoculated with murine colon carcinoma CT26 cells were intraperitoneally administered an anti-PD1 antibody on Day 0, when the tumor volume exceeded 50 mm3, and Day 5. [18F]FLT-PET imaging was performed pre-treatment (Day 0) and post treatment (Day 7). Tumor infiltrating lymphocytes (TILs) were identified by flow cytometry. [18F]FLT accumulation and localization in tumor tissue was evaluated by autoradiography and immunohistochemistry. The cell-cycle distribution of tumors and CT26 cells exposed to cytokines (interleukin-2, interferon [INF]-γ, and tumor necrosis factor [TNF]-α) was analyzed by flow cytometry. RESULTS: PD1 blockade increased CD8+ and CD4+ T cells in tumor tissue and significantly suppressed tumor proliferation; however, tumor [18F]FLT uptake remained unchanged. Autoradiography and immunohistochemistry showed that [18F]FLT was mainly taken up by cancer cells, but not TILs. Flow cytometric analysis demonstrated that the population of cells in G2/M phase increased after PD1 blockade. Moreover, INF-γ and TNF-α significantly increased cells in G2/M phase in vitro. CONCLUSION: PD1 blockade-induced alteration of the TME increased CT26 tumor cells in the G2/M phase, which have high thymidine kinase 1 activity. Therefore, [18F]FLT is taken up by tumor cells even if tumor proliferation is suppressed. This observation may be useful for evaluating the response to immunotherapy.


Assuntos
Didesoxinucleosídeos , Fluordesoxiglucose F18 , Animais , Camundongos , Divisão Celular , Linhagem Celular Tumoral , Didesoxinucleosídeos/metabolismo , Modelos Animais de Doenças , Glucose , Interferons , Interleucina-2 , Receptores de Morte Celular , Timidina , Fator de Necrose Tumoral alfa
2.
Nucl Med Biol ; 108-109: 85-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367730

RESUMO

INTRODUCTION: Hypoxia is common in solid tumors and creates an immunosuppressive environment that leads to resistance to immunotherapy, such as an anti-programmed death receptor-1 (PD-1) therapy. It has been suggested that anti-PD-1 therapy may reduce tumor hypoxia by remodeling the tumor vasculature; however, it is unclear how anti-PD-1 therapy reduces hypoxia over time. Therefore, we investigated the relationship between hypoxia and immune activation by anti-PD-1 therapy in murine cancer models. METHODS: Anti-PD-1 antibody was injected to CT26- and MC38-tumor-bearing mice on days 0 and 5. Tumor hypoxia was non-invasively evaluated using positron emission tomography (PET) with [18F]fluoromisonidazole ([18F]FMISO) on days 3 and 7. Histological analysis was conducted to investigate the infiltration of immune cells in [18F]FMISO-accumulated hypoxic area. In addition, the immune cell population in tumors and the percentages of cancer and immune cells under hypoxic conditions were analyzed at single-cell level using flow cytometry. RESULTS: Flow cytometric analysis of CT26 tumors on day 3 showed that anti-PD-1 therapy reduced hypoxia without inhibition of tumor growth. In addition, the infiltration of CD8+ T cells was increased in treated tumors. In contrast to CT26 tumors, the percentage of hypoxic cells in MC38 tumors did not change on days 3 and 7, and there was minimal immune activation induced by anti-PD-1 antibody. Changes in hypoxia in CT26 tumors were not detected by [18F]FMISO-PET, but autoradiogram showed that [18F]FMISO accumulated in immunosuppressed areas, where the infiltration of immune cells was relatively low. CONCLUSION: Reduction of hypoxia was induced in CT26 tumor, in which adequate immune response to anti-PD-1 therapy was exhibited, at an early time point before suppression of tumor growth. Our findings suggest that anti-PD-1 therapy can create a tumor microenvironment that facilitates immune activation by reducing hypoxia.


Assuntos
Neoplasias , Hipóxia Tumoral , Animais , Linfócitos T CD8-Positivos , Hipóxia Celular , Hipóxia , Camundongos , Misonidazol/análogos & derivados , Nitroimidazóis , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...